p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.207C23, C23.223C24, C22.602+ (1+4), C22.432- (1+4), Q8⋊7(C22⋊C4), (C2×Q8).259D4, C2.2(Q8⋊5D4), C2.1(Q8⋊6D4), C23.87(C22×C4), Q8○2(C2.C42), C23.7Q8⋊21C2, C22.114(C23×C4), (C23×C4).297C22, (C2×C42).426C22, C22.102(C22×D4), C24.3C22⋊18C2, (C22×C4).1244C23, (C22×D4).480C22, (C22×Q8).508C22, C2.C42.471C22, C2.23(C23.33C23), (C2×C4×Q8)⋊7C2, (C2×C4○D4)⋊16C4, C2.24(C4×C4○D4), (C2×C4)⋊19(C4○D4), (C4×C22⋊C4)⋊38C2, C4.27(C2×C22⋊C4), (C2×D4).213(C2×C4), (C2×C4).1068(C2×D4), (C2×Q8).218(C2×C4), (C22×C4○D4).9C2, (C2×C4⋊C4).817C22, (C2×C4).490(C22×C4), (C22×C4).307(C2×C4), C22.108(C2×C4○D4), C2.19(C22×C22⋊C4), (C2×Q8)○(C2.C42), C2.C42○(C22×Q8), (C2×C22⋊C4).32C22, SmallGroup(128,1073)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 748 in 436 conjugacy classes, 184 normal (13 characteristic)
C1, C2 [×3], C2 [×4], C2 [×6], C4 [×12], C4 [×12], C22 [×3], C22 [×4], C22 [×30], C2×C4 [×24], C2×C4 [×48], D4 [×24], Q8 [×16], C23, C23 [×6], C23 [×18], C42 [×12], C22⋊C4 [×18], C4⋊C4 [×12], C22×C4, C22×C4 [×23], C22×C4 [×12], C2×D4 [×12], C2×D4 [×12], C2×Q8 [×12], C4○D4 [×32], C24 [×3], C2.C42, C2.C42 [×3], C2×C42 [×6], C2×C22⋊C4 [×12], C2×C4⋊C4 [×6], C4×Q8 [×8], C23×C4 [×3], C22×D4 [×3], C22×Q8, C2×C4○D4 [×8], C2×C4○D4 [×8], C4×C22⋊C4 [×3], C23.7Q8 [×3], C24.3C22 [×6], C2×C4×Q8 [×2], C22×C4○D4, C24.207C23
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×8], C23 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×12], C4○D4 [×4], C24, C2×C22⋊C4 [×12], C23×C4, C22×D4 [×2], C2×C4○D4 [×2], 2+ (1+4), 2- (1+4), C22×C22⋊C4, C4×C4○D4, C23.33C23, Q8⋊5D4 [×2], Q8⋊6D4 [×2], C24.207C23
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=g2=b, gag-1=ab=ba, ac=ca, ad=da, eae-1=abc, af=fa, bc=cb, bd=db, fef-1=be=eb, gfg-1=bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, eg=ge >
(1 41)(2 28)(3 43)(4 26)(5 30)(6 45)(7 32)(8 47)(9 13)(10 56)(11 15)(12 54)(14 52)(16 50)(17 39)(18 64)(19 37)(20 62)(21 25)(22 44)(23 27)(24 42)(29 35)(31 33)(34 46)(36 48)(38 58)(40 60)(49 53)(51 55)(57 61)(59 63)
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 6 9 39)(2 40 10 7)(3 8 11 37)(4 38 12 5)(13 17 41 45)(14 46 42 18)(15 19 43 47)(16 48 44 20)(21 35 49 61)(22 62 50 36)(23 33 51 63)(24 64 52 34)(25 29 53 57)(26 58 54 30)(27 31 55 59)(28 60 56 32)
(1 13 9 41)(2 14 10 42)(3 15 11 43)(4 16 12 44)(5 48 38 20)(6 45 39 17)(7 46 40 18)(8 47 37 19)(21 53 49 25)(22 54 50 26)(23 55 51 27)(24 56 52 28)(29 61 57 35)(30 62 58 36)(31 63 59 33)(32 64 60 34)
G:=sub<Sym(64)| (1,41)(2,28)(3,43)(4,26)(5,30)(6,45)(7,32)(8,47)(9,13)(10,56)(11,15)(12,54)(14,52)(16,50)(17,39)(18,64)(19,37)(20,62)(21,25)(22,44)(23,27)(24,42)(29,35)(31,33)(34,46)(36,48)(38,58)(40,60)(49,53)(51,55)(57,61)(59,63), (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,6,9,39)(2,40,10,7)(3,8,11,37)(4,38,12,5)(13,17,41,45)(14,46,42,18)(15,19,43,47)(16,48,44,20)(21,35,49,61)(22,62,50,36)(23,33,51,63)(24,64,52,34)(25,29,53,57)(26,58,54,30)(27,31,55,59)(28,60,56,32), (1,13,9,41)(2,14,10,42)(3,15,11,43)(4,16,12,44)(5,48,38,20)(6,45,39,17)(7,46,40,18)(8,47,37,19)(21,53,49,25)(22,54,50,26)(23,55,51,27)(24,56,52,28)(29,61,57,35)(30,62,58,36)(31,63,59,33)(32,64,60,34)>;
G:=Group( (1,41)(2,28)(3,43)(4,26)(5,30)(6,45)(7,32)(8,47)(9,13)(10,56)(11,15)(12,54)(14,52)(16,50)(17,39)(18,64)(19,37)(20,62)(21,25)(22,44)(23,27)(24,42)(29,35)(31,33)(34,46)(36,48)(38,58)(40,60)(49,53)(51,55)(57,61)(59,63), (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,6,9,39)(2,40,10,7)(3,8,11,37)(4,38,12,5)(13,17,41,45)(14,46,42,18)(15,19,43,47)(16,48,44,20)(21,35,49,61)(22,62,50,36)(23,33,51,63)(24,64,52,34)(25,29,53,57)(26,58,54,30)(27,31,55,59)(28,60,56,32), (1,13,9,41)(2,14,10,42)(3,15,11,43)(4,16,12,44)(5,48,38,20)(6,45,39,17)(7,46,40,18)(8,47,37,19)(21,53,49,25)(22,54,50,26)(23,55,51,27)(24,56,52,28)(29,61,57,35)(30,62,58,36)(31,63,59,33)(32,64,60,34) );
G=PermutationGroup([(1,41),(2,28),(3,43),(4,26),(5,30),(6,45),(7,32),(8,47),(9,13),(10,56),(11,15),(12,54),(14,52),(16,50),(17,39),(18,64),(19,37),(20,62),(21,25),(22,44),(23,27),(24,42),(29,35),(31,33),(34,46),(36,48),(38,58),(40,60),(49,53),(51,55),(57,61),(59,63)], [(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,6,9,39),(2,40,10,7),(3,8,11,37),(4,38,12,5),(13,17,41,45),(14,46,42,18),(15,19,43,47),(16,48,44,20),(21,35,49,61),(22,62,50,36),(23,33,51,63),(24,64,52,34),(25,29,53,57),(26,58,54,30),(27,31,55,59),(28,60,56,32)], [(1,13,9,41),(2,14,10,42),(3,15,11,43),(4,16,12,44),(5,48,38,20),(6,45,39,17),(7,46,40,18),(8,47,37,19),(21,53,49,25),(22,54,50,26),(23,55,51,27),(24,56,52,28),(29,61,57,35),(30,62,58,36),(31,63,59,33),(32,64,60,34)])
Matrix representation ►G ⊆ GL5(𝔽5)
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 1 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 2 |
0 | 0 | 0 | 1 | 2 |
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 2 | 3 |
0 | 0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 4 |
0 | 0 | 0 | 2 | 4 |
G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,1,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[2,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,3,1,0,0,0,2,2],[4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0,3,3],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,2,0,0,0,4,4] >;
50 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2M | 4A | ··· | 4X | 4Y | ··· | 4AJ |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | C4○D4 | 2+ (1+4) | 2- (1+4) |
kernel | C24.207C23 | C4×C22⋊C4 | C23.7Q8 | C24.3C22 | C2×C4×Q8 | C22×C4○D4 | C2×C4○D4 | C2×Q8 | C2×C4 | C22 | C22 |
# reps | 1 | 3 | 3 | 6 | 2 | 1 | 16 | 8 | 8 | 1 | 1 |
In GAP, Magma, Sage, TeX
C_2^4._{207}C_2^3
% in TeX
G:=Group("C2^4.207C2^3");
// GroupNames label
G:=SmallGroup(128,1073);
// by ID
G=gap.SmallGroup(128,1073);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,100,346,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=g^2=b,g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,a*f=f*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*g=g*e>;
// generators/relations